1,371 research outputs found

    Perfect Anomalous Reflection with a Binary Huygens' Metasurface

    Full text link
    In this paper we propose a new metasurface that is able to reflect a known incoming electromagnetic wave into an arbitrary direction, with perfect power efficiency. This seemingly simple task, which we hereafter call perfect anomalous reflection, is actually highly non-trivial due to the differing wave impedances and complex interference between the incident and reflected waves. Heretofore, proposed metasurfaces which achieve perfect anomalous reflection require complicated, deeply subwavelength and/or multilayer element structures which allow them to couple to and from leaky and/or evanescent waves. In contrast, we demonstrate that using a Binary Huygens' Metasurface (BHM) --- a passive and lossless metasurface with only two cells per period --- perfect anomalous reflection can be achieved over a wide angular and frequency range. Through simulations and experiments at 24 GHz, we show that a properly designed BHM can anomalously reflect an incident electromagnetic wave from θi=50∘\theta_i = 50^\circ to θr=−22.5∘\theta_r = -22.5^\circ, with perfect power efficiency to within experimental precision

    A spatially shifted beam approach to subwavelength focusing

    Full text link
    Although negative-refractive-index metamaterials have successfully achieved subwavelength focusing, image resolution is limited by the presence of losses. In this Letter, a metal transmission screen with subwavelength spaced slots is proposed that focuses the near-field beyond the diffraction limit and furthermore, is easily scaled from microwave frequencies to the optical regime. An analytical model based on the superposition of shifted beam patterns is developed that agrees very well with full-wave simulations and is corroborated by experimental results at microwave frequencies.Comment: 5 pages, 7 figures. Content updated following reviewer comments to match final published pape

    Directional Dipole Dice Enabled by Anisotropic Chirality

    Full text link
    Directional radiation and scattering play an essential role in light manipulation for various applications in integrated nanophotonics, antenna and metasurface designs, quantum optics, etc. The most elemental system with this property is the class of directional dipoles, including the circular dipole, Huygens dipole, and Janus dipole. A unified realization of all three dipole types and a mechanism to freely switch among them are previously unreported, yet highly desirable for developing compact and multifunctional directional sources. Here, we theoretically and experimentally demonstrate that the synergy of chirality and anisotropy can give rise to all three directional dipoles in one structure at the same frequency under linearly polarized plane wave excitations. This mechanism enables a simple helix particle to serve as a directional dipole dice (DDD), achieving selective manipulation of optical directionality via different "faces" of the particle. We employ three "faces" of the DDD to realize face-multiplexed routing of guided waves in three orthogonal directions with the directionality determined by spin, power flow, and reactive power, respectively. This construction of the complete directionality space can enable the unprecedented high-dimensional control of both near-field and far-field directionality with broad applications in photonic integrated circuits, quantum information processing, and subwavelength-resolution imaging.Comment: 17 pages, 16 figure

    Fronto-cerebellar connectivity mediating cognitive processing speed

    Get PDF
    Processing speed is an important construct in understanding cognition. This study was aimed to control task specificity for understanding the neural mechanisms underlying cognitive processing speed. Forty young adult subjects performed attention tasks of two modalities (auditory and visual) and two levels of task rules (compatible and incompatible). Block-design fMRI captured BOLD signals during the tasks. Thirteen regions of interest were defined with reference to publicly available activation maps for processing speed tasks. Cognitive speed was derived from task reaction times, which yielded six sets of connectivity measures. Mixed-effect LASSO regression revealed six significant paths suggestive of a cerebello-frontal network predicting the cognitive speed. Among them, three are long range (two fronto-cerebellar, one cerebello-frontal), and three are short range (fronto-frontal, cerebello-cerebellar, and cerebello-thalamic). The long-range connections are likely to relate to cognitive control, and the short-range connections relate to rule-based stimulus-response processes. The revealed neural network suggests that automaticity, acting on the task rules and interplaying with effortful top-down attentional control, accounts for cognitive speed

    Relationship of dietary nitrate intake from vegetables with cardiovascular disease mortality: a prospective study in a cohort of older Australians

    Get PDF
    Purpose Short-term trials indicate inorganic nitrate and nitrate-rich vegetables may have vascular health benefits. However, few observational studies have explored the relationship between nitrate intake and long-term cardiovascular disease (CVD) outcomes. The primary aim of this study was to investigate the association of nitrate intake from vegetables with CVD mortality in a sample of older Australians. Methods A subgroup of participants without diabetes or major CVD at baseline (1992–1994) were included from the Blue Mountains Eye Study, a population-based cohort study of men and women aged ≥ 49 years. Diets were evaluated using a validated food frequency questionnaire at baseline, 5 years and 10 years of follow-up. Vegetable nitrate intake was estimated using a comprehensive vegetable nitrate database. Cox proportional hazard regression was used to explore the association between vegetable nitrate intake and CVD mortality. Results During 14 years of follow-up, 188/2229 (8.4%) participants died from CVD. In multivariable-adjusted analysis, participants in quartile 2 [69.5–99.6 mg/day; HR 0.53 (95% CI 0.35, 0.82)], quartile 3 [99.7–137.8 mg/day; HR 0.51 (95% CI 0.32, 0.80)], and quartile 4 [\u3e 137.8 mg/day; HR 0.63 (95% CI 0.41, 0.95)] of vegetable nitrate intake had lower hazards for CVD mortality compared to participants in quartile 1 (\u3c 69.5 mg/day). Conclusions In older Australian men and women, vegetable nitrate intake was inversely associated with CVD mortality, independent of lifestyle and cardiovascular risk factors. These findings confirm a recent report that intake of vegetable nitrate lowers the risk of CVD mortality in older women and extend these findings to older men

    A High-Spin Ground-State Donor-Acceptor Conjugated Polymer

    Get PDF
    Interest in high-spin organic materials is driven by opportunities to enable far-reaching fundamental science and develop technologies that integrate light element spin, magnetic, and quantum functionalities. Although extensively studied, the intrinsic instability of these materials complicates synthesis and precludes an understanding of how fundamental properties associated with the nature of the chemical bond and electron pairing in organic materials systems manifest in practical applications. Here, we demonstrate a conjugated polymer semiconductor, based on alternating cyclopentadithiophene and thiadiazoloquinoxaline units, that is a ground-state triplet in its neutral form. Electron paramagnetic resonance and magnetic susceptibility measurements are consistent with a high-to-low spin energy gap of 9.30 × 10−3 kcal mol−1. The strongly correlated electronic structure, very narrow bandgap, intramolecular ferromagnetic coupling, high electrical conductivity, solution processability, and robust stability open access to a broad variety of technologically relevant applications once thought of as beyond the current scope of organic semiconductors

    Macrophage development and activation involve coordinated intron retention in key inflammatory regulators

    Get PDF
    Monocytes and macrophages are essential components of the innate immune system. Herein, we report that intron retention (IR) plays an important role in the development and function of these cells. Using Illumina mRNA sequencing, Nanopore direct cDNA sequencing and proteomics analysis, we identify IR events that affect the expression of key genes/proteins involved in macrophage development and function. We demonstrate that decreased IR in nuclear-detained mRNA is coupled with increased expression of genes encoding regulators of macrophage transcription, phagocytosis and inflammatory signalling, including ID2, IRF7, ENG and LAT. We further show that this dynamic IR program persists during the polarisation of resting macrophages into activated macrophages. In the presence of proinflammatory stimuli, intron-retaining CXCL2 and NFKBIZ transcripts are rapidly spliced, enabling timely expression of these key inflammatory regulators by macrophages. Our study provides novel insights into the molecular factors controlling vital regulators of the innate immune response

    Coherent gluon production in very high energy heavy ion collisions

    Get PDF
    The early stages of a relativistic heavy-ion collision are examined in the framework of an effective classical SU(3) Yang-Mills theory in the transverse plane. We compute the initial energy and number distributions, per unit rapidity, at mid-rapidity, of gluons produced in high energy heavy ion collisions. We discuss the phenomenological implications of our results in light of the recent RHIC data.Comment: 4 pages, 2 figure
    • …
    corecore